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Abstract

The basic governing equations for the second-order three-dimensional hy-

personic thermal and chemical nonequillbrium boundary layer are derived

by means of an order-of-magnitude analysis. A two-temperature concept is

implemented into the system of boundary-layer equations by simplifying the

rather complicated general three-temperature thermal gas model. The equa-

tions are written in a surface-oriented non-orthogonal curvilinear coordinate

system, where two curvilinear coordinates are non-orthogonal and a third

coordinate is normal to the surface. The equations are described with min-

imum use of tensor expressions arising from the coordinate transformation,

to avoid unnecessary confusion for readers. The set of equations obtained

will be suitable for the development of a three-dimensional nonequilibrium

boundary-layer code. Such a code could be used to determine economically

the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic ve-

hicles with general configurations. In addition, the basic equations for three-

dimensional stagnation flow, of which solution is required as an initial value

for space-marching integration of the boundary-layer equations, are given

along with the boundary conditions, the boundary-layer parameters and the

inner-outer layer matching procedure. Expressions for the chemical reac-

tion rates and the thermodynamic and transport properties in the thermal

nonequilibrium environment are explicitly given.
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Nomenclature

vector quantity

determinant of surface metric tensor

covariant and contravariant surface base vectors

surface metric tensor components

component of covariant surface curvature tensor

mass fraction of species s

frozen specific heat of mixture at constant pressure

specific heat of species s at constant pressure
for translational mode

specific heat of mixture at constant pressure

for electronic excitation

specific heat of species 8 at constant pressure

for electronic excitation

specific heat of species 8 at constant pressure
for rotational excitation

specific heat of mixture of vibrationally excited molecules

specific heat of molecular species 8 at constant

pressure for vibrational excitation

specific heat of species s at constant volume

for electronic excitation

specific heat of species s at constant volume

for vibrational excitation

effective diffusion coefficient of species s

binary diffusion coefficient for s-r species

ambipolar diffusion coefficient of ionic species s

average vibrational energy per unit mass of molecular species 8,

which is created or destroyed at rate tbo

mixture energy per unit mass

mixture electronic energy per unit mass

electronic energy per unit mass of species s

energy per unit mass of species 8

energy of formation of species 8

mixture vibrational energy per unit mass
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= vibrational energy per unit mass of species s

= equilibrium vibrational energy per unit mass of

species s at translational temperature T

= first ionization energy of species s per mole

= scalar quantity

= determinant of general metric tensor

= covariant and contravariant general base, vectors

= covariant and contravariant general metric tensor components

= mixture enthalpy per unit mass

= mixture electronic enthalpy per unit mass

= electronic enthalpy per unit mass of species s

= enthalpy per unit mass of species s

= heat of formation of species s

= mixture vibrational enthalpy per unit mass

= vibrational enthalpy per unit mass of species s
= Jacobian of transformation

= Boltzmann constant

= backward reaction rate coefficient for reaction p

= forward reaction rate coefficient for reaction p

= equilibrium constant for reaction p

= body length

= Lewis number of species s

= Lewis number of vibrationally excited molecular species
= mixture mass

= mass of species s

= molecular weight of species s

= freestream Mach number, or mixture molecular weight at freestream

= molar rate of production of ionized species s

per unit volume by electron-impact ionization

= pressure
= Prandtl number

= Prandtl number for mixture of vibrationaUy excited molecules
= heat-flux vector

= wall heat-transfer rate

= ordinary gas constant
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= universal gas constant

: Reynolds number

= bridging function in vibrational rate equation

= translational-rotational temperature of heavy particle

= geometrically averaged temperature for dissociative reactions

= post-shock translational-rotational temperature

= vibrational-electronic-electron temperature

,= post-shock vibrational temperature

= covariant and contravariant stress tensor component

= reference temperature

= freestream velocity

= Cartesian velocity components

= contravariant velocity components in a curvilinear system

= mass production rate of species s per unit volume

= velocity vector

= ith component of velocity

= diffusion velocity vector of species s
= Cartesian coordinates

= general non-orthogonaJ coordinate

---- Cartesian reference coordinate

---- molar fraction of species s

= component of contravariant base vector

= component of covariant base vector

--- molar concentration of species s per unit mass
= total molar concentration of mixture

= Christoffel symbols of the second kind

= boundary-layer thickness

= mass flow displacement thickness

= Kronecker tensor

= modified collision integrals for the collision pair s - r

= characteristic energy for diffusion model for molecular species s

= frozen thermal conductivity for translational-rotational

energy of heavy particles
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_t
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_v
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P

p.

PM

P.

re.

Tj

rot

X

= frozen thermal conductivity of electrons owing to

collisions between electrons and all particles

= frozen thermal conductivity of electrons owing to

collisions among electrons

- thermal conductivity for rotational energy

= frozen thermal conductivity for translational energy

: thermal conductivity of vibrational energy

owing to collisions between molecules and all particles

: thermal conductivity of vibrational energy

owing to collisions among molecules

: second coefficient of viscosity

= viscosity coefficient of mixture

= reference viscosity

= curvilinear surface-oriented coordinates

= mixture mass density

-- mass density of electrons

- overall mass density of molecules

: mass density of species s

-: limiting collision cross-sectlon

- collision limited vibrational relaxation time for molecular species 8

: combined vibrational relaxation time of molecular species 8

: average vibrational relaxation time for species s

-- vibrational relaxation time for species s with collision partner r

: dissipationfunction

- transformed normal coordinate,(: ¢/_)



Subscripts
e --

ed =

el =

i =

j =
k =

r

re/ =

8h --

oo ---

electron

boundary-layer outer edge
electronic excitation mode

index of the nodes in z _ direction

index of the nodes in z j direction

index of the nodes in z _ direction

species r, or rotational mode

dimensional reference quantity

species 3, or stagnation point;

1= N, 2 = O, 3 = N2, 4 = 02, 5 = NO, 6 = N +,

7 = 0 +, 8 = N +, 9 = 0 +, 10 = NO +, 11 = e-
post-shock condition

vibrational mode

quantity at the wall

freestream quantity

Superscripts

- = dimensional quantity

• = physical quantity

Conventions

Latin indices in tensor relationships vary between 1 and 3, Greek indices

between 1 and 2.



1. Introduction

With the rapid advent of computer hardware and numerical algorithms in

the last decade, it is now possible to solve the Navier-Stokes (N-S) equations

to simulate the hypersonic flow field around general body configuration with

high accuracy [1, 2].

It is extremely difficult, if not impossible, to reproduce experimentally

the complex flow fields around present and future space vehicles, such as the

Space Shuttle Orbiter, assured crew return vehicle (ACRV), and aeroassisted

space transfer vehicle (ASTV), in a ground-based simulation facility. Thus,

it becomes highly desirable to rely on computational-fluid-dynamics (CFD)

for hypersonic flow simulation. However, systematic application of the N-S

solvers to the design of the space vehicles is still limited by the extremely high

costs of numerical operation. This is especially true for solving the three-

dimensional flow field around a complete geometry, which needs prohibitive

amounts of computer time and storage.

Numerical tools for design environments require fast solution of many

cases. Presently available three-dimensional methods such as a streamline

code and an axisymmetric analog code [3, 4] are too approximate and too

restrictive for general use. Furthermore, these codes can not account for real

gas effects or surface effects which are important aspects of the hypersonic

flight regimes. Consequently, there is a need to develop a computational code

which is economical to use and has the required accuracy as an engineering

design tool. An attractive candidate for meeting this requirement is the

viscous-inviscid two layer approach. By matching the boundary-layer flow to

the external inviscid flow about three-dimensional configurations, an entire

flow field can be predicted with substantial reduction of the computational

effort.

Until the mid 70's, study of three-dimensional compressible boundary-

layer theory had been actively conducted [5-8] in the U.S. in relation to

the development of hypersonic aircraft. Although these three-dimensional

studies were extensive and involved laminar, transitional, and turbulent

boundary-layer flows, all of them were based on classical, first-order boundary

layer theory. As a result, practical application was limited to smooth bod-

ies like conical geometries and thin wing configurations. In addition, most

methods utilized an orthogonal curvilinear coordinate system which further



hindered their use for broad application. Meanwhile, research efforts then

were shifted to the development of numerical techniques for solving the full

Navier-Stokes (FNS), parabolized Navier-Stokes (PNS) and viscous-shock-

layer (VSL) equations, leading to the dwindling of boundary-layer approach.

Classical, fist-order boundary-layer theory is based on the assumption of

very small curvature compared with the boundary-layer thickness. This is

not the case for a general three-dimensional geometry. Furthermore, classical

boundary-layer theory can not handle second-order effects such as displace-

ment effects which are provoked by the viscous region, entropy and total

enthalpy gradient effects, which originate in the inviscid region of the curved

bow shock present in supersonic/hypersonic flow, and body curvature ef-

fects. The shock wave curvature in the nose region has a strong influence

on downstream aerodynamic heating and on the boundary-layer edge prop-

erties, which in turn determine the convective heating load of the vehicle [1].

The limitations of the fist-order boundary-layer theory can be overcome to

a certain extent by considering these second-order effects properly.

Second-order boundary-layer theory was fist studied by Van Dyke [9-

11], who distinguished the second-order effects. He expanded flow variables

asymptotically in powers of the perturbation parameter Re -1/2, where Re is

a characteristic Reynolds number. This was done separately for the outer

inviscid and inner viscous flows. The results are then substituted into the

Navier-Stokes equations to obtain the first- and second-order set of equations

for each flow region. To obtain the matching conditions where the regions

overlap, the variables of the outer flow were represented by an appropriate ex-

pansion of its wall values. Van Dyke applied this approach to two-dimensional

and axisymmetric flows. Recently, Aupoix et al. [12, 13] have modified the

asymptotic expansion approach in such a way that a smooth matching of

the inner and outer solutions is ensured. Their so called 'defect' equations

include Van Dyke's equations plus terms of higher order. An attempt to

extend this approach to three-dimensional flow is under way.

An alternate way to obtain the second-order boundary-layer equations

is the order-of-magnitude analysis which has been widely used for deriving

the simplified form of the Navier-Stokes equations. In this analysis, the N-S

equations are fist expressed in dimensionless form by normalizing all flow

variables with reference values while all linear dimensions are normalized by

8



a characteristic length. Each term of the N-S equations is then estimated and

those sma_er than a prescribed value are dropped from the equation system.

In the fLrst-order theory, only terms of order unity are retained leading to the

well known classical boundary layer equations. In the second-order theory,

terms up to order Re -1/2, which is the same as the perturbation parame-

ter defined by Van Dyke [9-11], are retained. This approach is much easier

to understand than the perturbation approach, since it follows the orderly

simplification of the full Navier-Stokes equations thus allowing the compari-

son with PNS and VSL equations depending on the level of approximation.

Davis and F1/igge-Lotz [14] used this order-of magnitude method comprehen-

sively to develop the VSL equations which are the composite equations for

the Euler equations and the second-order viscous equations.

It must be noted that the surface curvature effect is customarily distin-

guished from the other second-order effects such as the displacement effect,

the external entropy gradient effect and the external total enthalpy gradient.

All these second order effects only affect the matching of the boundary-layer

flow with the external flow and thus influence the boundary conditions of

either the outer inviscid region or the inner viscous region without directly

intervening in the boundary layer equations. The displacement effect can

be dealt with by means of either the displacement surface or the equivalent

inviscid source distribution. The entropy and total enthalpy gradient effects,

which originate in the inviscid flow region, are taken into account through

the iterative viscous-inviscid matching process.

On the other hand, the curvature effect is caused exclusively by the shape

of the body surface. When the local boundary-layer thickness is not small

compared with the smallest radius of curvature of the body surface, which is

the case for any practical body geometry, the curvature produces a non-zero

pressure gradient across the boundary layer, expressed by the body-normal

momentum equation. Moreover, the curvature contributes other terms to

the second-order equations and affects the boundary conditions.

In order to predict correctly the flow field about general three-dimensional

geometries based on the viscous-inviscid two-layer model, one must have an

elaborate second-order boundary-layer solution, an accurate inviscid Euler

solution and a rigorous inner-outer matching technique. Using this strategy,

Monnoyer [15-17] has calculated the hypersonic three-dimensional laminar

flow on general body configurations. His method is a direct extension of

9



the comprehensive European efforts [18, 19] in the development of higher-

order boundary-layer theory. Monnoyer [15] closely followed the order-of-

magnitude analysis of Robert [18], who derived the second-order boundary-

layer equations from the N-S equations in a curvillnear non-orthogonal coor-

dinate system [20], and modified the evaluation of surface curvature. Mon-

noyer applied the second-order boundary-layer equations for solving the three-

dimensional flow around an ellipsoid at incidence [16], and then, flow past the

windward side of the European space shuttle HERMES [17]. Although Mon-

noyer has dealt with three-dimensional boundary-layer flow quite extensively,

only primitive gas models (perfect and equilibrium gas) have been applied

so far. Monnoyer's work and other recent papers [21, 22] demonstrate that

the inviscid/boundary layer approach can provide flow predictions for cases

without separation that are nearly as accurate as Navier-Stokes solutions and

are significantly cheaper.

Apart from the European work, an attempt was made to develop the

higher-order boundary-layer equations at the NASA Ames Research Center

in the late 80's. Panaras [23] derived the second-order boundary-layer equa-

tions for three-dimensional compressible flows. The equations were written

in a generalized curvilinear coordinate system, and were developed from the

Navier-Stokes equations written in tensor notation by means of an order-of-

magnitude analysis. The resulting equations are nearly identical with those

developed by Monnoyer [15, 16]. Subsequently, Steger et al. [24, 25] mod-

ified Panaras_s analysis to describe the boundary-layer equations in general

body-fitted curvilinear coordinates while retaining the original Cartesian de-

pendent variables. This alternate form of the boundary-layer equations offers

several advantages in terms of numerical stability, and the software (gridding,

boundary condition routines, etc) developed for many Navier-Stokes schemes

can be readily applied. This attractive new formulation of the boundary-layer

equations is, however, rather arbitrarily simplified when applied to sample
calculations because of concerns about numerical stability. Very limited cal-

culations for a perfect gas have been undertaken so far. Therefore, the general

use of this approach remains to be seen.

In the mid 70's, Gershbein [26] in the former U.S.S.R. developed the sys-

tem of equations for a three-dimensional chemically reacting laminar bound-

ary layer in curvilinear non-orthogonal coordinat e system. His set of equa-
tions was a direct extension of the three-dimensional boundary-layer equa-

10



tions derivedby Shevelev[27]for aperfect gas, which was based on first-order

boundary layer theory. Due to the first-order analysis, Gershbein dealt with

only flows past simple smooth blunt bodies such as an ellipsoid and a cylinder

with a primitive gas chemistry.

In the hypersonic flight regime, the thermal and chemical characteristics

of air in the shock layer of space vehicles are altered in ways that affect

the thermodynamic and transport properties, the chemical reaction rates,

and the radiation properties. These properties, in turn, influence the char-

acteristics of the flow, the shear stress, and the heat flux. For the next

generation of aerospace vehicles, which usually will fly through the upper

atmosphere of Earth, nonequilibrium aerothermochemistry and finite-rate

surface catalysis will play an important role in determining the aerody-

namic/aerothermodynamic loads to the surface [28-32].

Highly sophisticated high-temperature thermochemical gas models have

been developed in recent years at the NASA Ames Research Center [33].

These real gas models have been evolved for the purpose of maturing the

enabling technology necessary for the design of proposed aerobraking and

aeromaneuvering space vehicle configurations such as an aeroassisted orbital

transfer vehicle (AOTV) and transatmospherie vehicle (TAV). The remain-

ing task, therefore, is how to simplify, without significant compromise, these

rather complicated thermochemical gas models and to implement them into

the engineering flow field solver such as the boundary-layer method.

Since the type of the boundary-layer equations is a parabolic, they can be

solved using space-marching integration methods. The Navier-Stokes equa-

tions, on the other hand, have to be integrated with time-marching methods

which require enormous amounts of computational time and storage. Numer-

ical schemes for the boundary-layer equations are relatively well-established

and tested as compared to methods for the other viscous flow equations [34].

The purpose of the present study is to derive the second-order hypersonic

three-dimensional thermochemical nonequilibrium boundary-layer equations

in generalized curvilinear coordinates. The resulting set of equations will be

suitable for the development of a boundary-layer code which allows simulta-

neous handling of both general three-dimensional configurations and general

thermochemically nonequilibrium gas models in an engineering context. Al-

though the future options include wall catalysis, ablation, radiative heat

11



transfer and turbulent flow, major focus is placed on the three-dimensional

laminar boundary-layer flow field around practical geometries with real-gas

effects. The strong-viscous interactions, such as flow separation or shock

boundary-layer interaction, will not be treated here since these problems are

beyond the scope of the boundary-layer approach.

12



2. Governing Equations

2.1 Coordinate System

The selection of a coordinate system to describe the boundary-layer equa-

tions over a three-dimensional body is of major importance and can signifi-

cantly affect the usefulness and applicability of the final computer code [7].

In addition, the boundary-layer approximation is impractical to implement

in any system other than a surface-oriented coordinate system. Selection of

an orthogonal system may cause a number of inconveniences together with

lengthy interpolation procedures [6]. Consequently, the natural choice for the

coordinate system of general three-dimensional boundary-layer equations is

a surface-oriented non-orthogonal curvilinear coordinate system where two

curvilinear coordinates are locally parallel to the surface and a third coordi-

nate is normal to the surface in order to implement a thin boundary-layer as-

sumption. In this coordinate system, surface-normal derivative terms, which

play an important role in the boundary-layer equations, can be easily recog-
nized.

The surface-oriented non-orthogonal curvilinear coordinate system has

been widely used in the works of European groups [12-20] , in which they

named it a surface-oriented locally monoclinic coordinate system. They used

extensive tensor concepts, which are complicated enough to scare off the un-

familiar reader, to derive the boundary-layer equations and to determine the

metric properties of the body surface. Furthermore, their unique use of index

notation and so-called 'shifters' may cause unnecessary confusion. On the

other hand, Panaras [23] described the system of equations in such a way that

the interface between the analytical partial-differentiation notation and the

tensor notation is easily understandable. Therefore, the tensor formulation

and the order-of-magnitude analysis of Panaras [23] are used in the present

study along with the boundary condition treatment, boundary-layer parame-

ters and inner-outer layer matching procedure of the European groups[12-19].

To avoid confusion, however, the usual notation of fluid dynamics is employed

with 'minimal' use of tensor expressions.

2.1.1 Base Vectors and Metric Coefficients

13



The genera] non-orthogonal, curvilinear surface-oriented coordinate sys-

tem zi(_,_/,_) is depicted in Fig. 1 where the Cartesian coordinate system

y¢(z,y,z) is used as a reference. The coordinate system consists of two

curvilinear coordinates _ and '1 locally para_el to the surface and a third

coordinate _ locally orthogonal to the other two coordinates and rectilinear.

It must be noted that the complete space above the surface can be uniquely

described by these coordinates if the surface is convex but only partly if the

surface is concave [15].

In the present paper, only the essential geometric relations, which result

from coordinate transformation and which are presented in tensor notation,

are described. The detailed tensor analysis applied to the basic equations of

fluid dynamics can be found in [15, 19, 20]. In tensor notation, superscripted

indices, e.g. u _, are called contravariant tensors and subscripted indices, e.g.

ui, covariant tensors. In Fig. 1, _, is an unit vector in the Cartesian reference

coordinate system, _ is a covariant vector at the surface (_ = 0) and _ is a

general covariant base vector (off-surface points). The general covariant base

vector _ in this system is defined by the transformation [20]

_i' i t

= -_-zi _, =/3_ e_/,; (i,i'= 1,2,3)

where the notation _' is defined by

• y

(1)

(2)

In the present notation, the Einstein summation convention is used through-

out, e.g.:

= + + £%
In a general non-orthogonal curvilinear coordinate system, the base vector 9_

is neither perpendicular nor of unit length contrary to the case for a Cartesian

coordinate system.

Similarly, the covariant base vector at the surface is defined by

= _'e_,; (i,i'= 1,2,3) (3)

where the superscript '.' denotes a quantity at a point on the body surface.

The contravariant base vector 9_i is defined by

gi_ = ___Fe_, = a,,e_i,;i (i,i'= 1,2,3) (4)

14



where cx_, is defined by

Oy

The contravariant base vector must satisfy the relation

where 6_ is the Kronecker tensor

(5)

(6)

1 0 0]
6_= 0 1 0

0 0 1

It must be noted that in a Cartesian coordinate system the covariant and

the contravariant base are identical.

The covariant metric tensor components g_j is defined by

3

it=l

The contravariant metric tensor components g_ are given by the orthogonal-

ity relation

g_jg_- _ (8)

thus, they are connected to the components of the covariant metric tensor

with the relation

g_= !(g_.,g,,._ g_.g,.,.,)
g

whereindices(_,j,k)_d (l,_,,',)arecyclic.
Here, g is the determinant of the metric tensor

(9)

gll g12 gls

g21 g22 g2s

gsl gs2 gss

_t

Therefore, the Jacobian of the transformation from _ (z,_, z) to z_(_,r/.()

_= 77v r/=

15



is related to the determinant g by the relation

1

j=_ (10)

When differentiating tensors in terms of curvilinear coordinates, certain com-

binations of partial derivatives of metric tensor components (the Christoffel

symbols) play an important role. The Christoffel symbols of the second kind

are defined by

r,'_= r_,= a_" s' (li)

I'i_ are further denoted by

= 2 ' az i _ az _" (12)

The Christoffel symbols may be interpreted in terms of the variation of base

vectors with respect to the coordinates. The Christoffel symbols are zero in

a Cartesian coordinates system.

In the present coordinate system, the base vectors g/ are space-dependent

and g-s is an unit vector, thus g_j takes the form:

gll g12 0 ]
gt2 g_2 0

0 0 1

and the determinant g of the metric tensor becomes

g -- gllg_2 - (gtz) _ (13)

where the off-diagonal term gl_ equals zero for orthogonal coordinates. For

exphcit expression of the metric tensor components, see Appendix A.

The metric tensor at the surface is a special case of gi_ [19]:

.o_(_°) = g,j(_°,_ = 0); (_,_ = 1,2) (14)

thus, the surface metric tensor becomes

16



The covariant curvature tensor boa of the surface is defined by [19]

ba_ = Oz---.._ .as; (a,_ = 1,2)

With equation(3), b,_ can be expressed by

[ ]k'=l bl_ b_2

Similar simplifications can be applied to the Christoffel symbols.

r_ =_3 = rt3 =_s = 0 (_ = 1,2)

(15)

(16)

Equation (16) states that any Christoffel symbol vanishes if more than one

of its indices is a 3 (normal coordinate). For details, see Appendix B.

2.1.2 Physical Flow Quantity

In non-Cartesian coordinate systems, in general, tensor components do

not have the correct physical dimension even if they axe orthogonal. This is
due to the fact that in such coordinate frames the base vectors are functions

of the coordinates z i and are not necessarily dimensionless unit vectors as

in a Cartesian system [20, 35]. Any vector v_.can be written as the sum of

its components with respect to an arbitrary set of covariant (contravariant)

base vectors g_(g_) referred to a particular point in space:

= _'_ = _' (17)

where v i is a contravariant velocity component and v_ is a covariant velocity

component.

The contravariant physical velocity component v *i is defined by

_ =_"_ (18)

where _ is an unit vector parallel to the covariant base vector _. Since

= _ = _ (19)

17



Then
_*_= v_¢ (20)

In similar fashion, the covariant physical velocity component v* is given by

_ = V/_V, (21)

2.1.3 Covarlant Derivatives

When differentiating a vector in terms of curvilinear coordinates, not

only the vector itself but also the corresponding base vectors have to be

differentiated as well since they are space-dependent.

The partial derivative of a vector v_ consists of two parts [20]:

Or_ Ov_ _O&
0z_

- Ovi i k
(22)

wherein 0v _

v'l_=--b_J+ r_' (23)
is called the covariant derivative of the contravariant vector component v _.

The covariant derivative of stress tensor component T ij is given by the rela-

tion: OT_j

T'J[k =_ Oz k + r_,T _j + r_,T" (24)

In the case of a scalar f, the covariaat derivative reduces to the partial

derivative with respect to the coordinate

of (25)fl_ = O_J

The divergence of a vector A is defined by [23]

OA i

divA - cgzi + r_AJ (26)
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Since

Similarly

1 o

10 1 0

(27)

(28)

1 0 (Tav/_) + r  TZj (29)
Tit [J - v'_ Ozt

2.2 Dimensional Form of the Navier-Stokes Equations

In the present paper, we deal with thermal and chemical nonequilibrium

air flow with 11 species (N, O, N2, 02, NO, N +, O +, N +, 0 +, NO + ,

e-). To reduce the complexity of the general three-temperature thermal

model developed by Lee [29], the two-temperature approach proposed by

Park [36, 37] is adopted in the present study. For the details of general basic

equations based on the three-temperature model for hypersonic thermochem-

ical nonequillbrium flow in Cartesian coordinates, see Ref. 29. According

to Park's two-temperature model [36, 37], translational-rotational tempera-

ture T and vibrational-electronic-electron temperature T_ are necessary to

describe the system of governing equations and to express the chemical re-

action rates and thermodynamic and transport properties. The concept of

a two-temperature model originates in the fact that the energy transfer rate
between the translational mode of free electrons and the vibrational mode of

molecular nitrogen (e-V process) is much faster than the rate between trans-

lational and vibrational modes of nitrogen molecules (T-V process) [38, 39].

The necessary set of basic governing equations consists of overall mass,

overa_ momentum, vibrational-electronic-electron energy, overall energy and

species mass conservation equations plus the complementary equations of

state, which are required to close the system of equations. In deriving the

equations, diffusion due to the species concentration gradient is considered,

while thermal and pressure diffusion are neglected.
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The dimensionM form of the Navier-Stokes equations for steady ther-

mochemlca] nonequi].ibrium flow written in genera] curvilinear coordinates

system _ are given by [20, 23, 29, 40]

Continuity:

_(pv v_) = o (30)
Moment um:

"'--_"_ + _,,:J_ _"Jl_ (31)
,O'V_ --

where the stress tensor T'_J and its covariant derivative T'_JIj are given by

Tq = (-_ + X_]k)g 'j + _'(g_'v_],,,,+ g_"_l-) (32)

I i (:t_jx/.g)+ _',:F/'

ijO i _.= g _[-_ + :jg (_v/E)]

i 0 i,_
+ v7_;L_vq(g I,.,+.¢"_1,,)]

+ _,_(gJ"_ I,,,+ _"#1,,)

VibrationaLelectronic-electron energy:

___O_v o_ •
_ - -_.(_- +_,,_) +

: o ..o_,,.

1 0 11

_ -_o,. _r._-_o is'
+ _ _ c" "_. _._ - _r.,._

#--M

10 _ 10

+ 3_,_(7'- 7'.) _ ",, -" =
r=l _=6 _=M

Overall energy:

(33)

(34)
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____.ah" i a aT"

+ j_ [v_(_o+ _.)g _] + ----
1 O 1, _580 °

_,-(__ . .g -_) (35)
"V/_ #--1

where the dissipation function is given by

¥
{.]_g-

Species continuity:

v_( )+ G;

(36)

(, = 1,2,...,11) (3T)

,o
Equation of state:

Equation of state for electrons:

(38)

(39)

In the above equations system, an overbar '-' denotes a dimensional quantity.

The heat-flux vector _, in tensor notation, can be expressed as

.. OT ..O'T,, 11
__ -v-- _-_ {j(90,, (40)= -R'g",t_ - (_"+ _')g" o'_ p2.., • .g

B----1

2.3 Normalized Form of the Boundary-Layer Equations

The second-order boundary-layer equations are derived in a system of co-

ordinates where the surface coordinates are denoted by (_,_2)= (_',_), and
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the normal one by _-3 = 7- In order to carry out the order-of-magnltude ana-

lysis, the independent variables 7, 7, _ and the flow variables are normalized

as follows:

E,,,-

#.tUoo

m

where the overbar '-' indicates dimensional quantities, subscript 'ref' refer-

ence quantities and 'oo' freestream quantities.

In the above equations, the velocity vector components U, V and W are

the contravariant velocity components, which are connected to the Cartesian

velocity components u, v and w by the components of the contravariant base
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vectors

U = Gu + _vv + Gw

V = r/:u + %v + r/.w

w = ¢,,,,+ ¢_,,+ ¢,w (41)

Furthermore, they are related to the physical contravariant velocity compo-

nents U*, V* and W* by means of the diagonal elements of the metric tensor

go [equation(20)].
U* V*

v= (42)
and since gss = 1,

w=w" (43)
On the other hand, the derivative of a scalar quantity such as the pressure

is related to the Cartesian pressure derivatives by the chain-rule [9.8]

p,_ = z,Tp_ + Y,P_ + z,Tp.

pc = zCp,, + ycp_ + zcp. (44)

The second-order, three-dimensional, compressible boundary-layer equa-

tions have been derived previously from the non-dimensional Navier-Stokes

equations by an order-of-magnitude analysis in non-orthogonal locally normal

surface-oriented coordinate system [15-18,23]. In addition to the boundary-

layer thickness parameter 8, which is the order of Re -1/2, Monnoyer [15]

introduced the following curvature parameter k:

h _ ma_(IK1 I,IK2 I) (45)

where/Q and/(2 are the principal curvatures of the surface (see Appendix

C). According to Monnoyer's analysis, first-order theory is applied when

O(k) < O(1), which is equivalent to the classical boundary-layer assumption

O(1/k) >> 0(8) which states the local radius of curvature of the surface is

much larger than the boundary-layer thickness. In this case, the variation

of the metric coefficients across the boundary layer is negligible. On the
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other hand, if O(1) < O(k) < O(1/6), then the variation of the metric coeffi-

cients with distance from the surface is no longer negligible, and the second-

order terms must be considered. This second-order condition of Monnoyer is

equivalent to the one in Panara.s' analysis that the normal derivatives of the

metrics are _sumed to he O(1) < Og,,/O_3 <_O(1/6),(i,j = 1,2) for large
surface-curvature [23]. As mentioned in 2.1, the order-of-magnitude analy-

sis of Panaras is used here mainly because of its simplicity along with the

methods of the European groups for boundary conditions, boundary-layer

parameters and inner-outer layer matching [12-19].

The order-of-magnitude analysis of Panaras is applied to the system

of basic governing equations (30)-(37). The resulting second-order, three-

dimensional, laminar boundary-layer equations for a multicomponent two-

temperature chemically reacting gas mixture in the curvilinear coordinate

system (_,77, 4) are given by

Continuity:

_-momentum:

O(pUv_)+ o(pvv_)+ O(pW_)=0 (46)
o_ on o¢

OU OU OU

pv_- +pvN +pw_ +pv'rl_ +2pvvrh +pv_r;,
922 Op 912 OqP

go_ go_
1 0 OU I 10UOv/'#

+ _ N ("-_) + R_v4" o_ o_
1 1 0

+ Re _0¢ [_q"(Ur_ + vr_.)] + ----

OU-1 # OVvl

_-momentum:

OV OV OV

puT( + pv--o_ + pwT( + pu'r_, + 2pvvrh + pv'r:,

9a2 0p gaa Op

g O_ g 077
1 0 OV 1 10V Ov_

+
T( (# T( ) + ----_'Re 0¢ O_
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1 1 0 # OU__ # OV

+ _[.5.(ur], + vr]_)]+ --_r_, + ----r]_ (4s)Re Re % Re O_

C-momentum:

1 20gn . . c9g12 1 V2 09__2 Op
_pv -YC+ p'_"--yC+ _P -_ - o¢ (49)

Vibrational-electronic-electron energy:

,Oev Oev ,, c%v OW

,_- +pvT +p_- = p.[_ -
+ (r_l+ r_,)v + (rl, + r;,)(u + v) + (r_. + r;,)v]

1 o , OT,,. 1 0 (,,"+ ,,.)O,ff_OTo
+ _[(_ +"')-_-J + Re0¢ ¢# 0¢ 0¢

1 0 II t_Le,,., OC, 1 1 11 laLe,,., Ox/_OC°

--_ >_i.(--w---by,.):;" 0¢

+ P __, c e_,.° - e,,., I Toh - T,, is,_ ' _ xo v:,.°=M ro T,h -- T,_.,h + 3( )p(T- T_) ,=1_ _"

Io

- _ _.,.E,..+ _ _.D: (50)
°---8 o=M

• Overall energy:

p(U_ + vOh wOh. Op _ Op+ T()-(u-_ + v + w-y()

10 OT 10- Re#_(_3T ) + _[(_ + ';') ]
1 _, Ov_OT 1 0 (re,, + x_,)Ov'_OT,,

+ R--;_ o¢ o---(+ Reo¢ vO o¢ o¢

_ _ O ,.,OU, O vOU 0 uOV 0 OV

# - OUOgal vOU Oqgl2 OVOg,2 . OVOg2_,

+ _Iu-_ o_ + o¢ o¢ + u u¢ o¢ + v_ _j

o ,1 _te._ oc.. _ _ _,te. h _o,zoc.
+ _-_(_ _,,. "--yC)+ _---;__' P_ " o¢ o( (_)
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Species continuity:

_ oc, _oc, _ oc,
_U_+_V_+_W _ ....

1 0 gLeoOCo. 1 1 pLeo OVr_OCo

+,_. (, = 1,2,...,11) (52)

The equation of state is

•¢::_-_ 1° C-_-'TM, M_p = _--_.®).(E.=I + T_) (5a)

where _ is the universal gas constant, and M= is a mixture molecular weight
at the freestream.

Similarly the equation of state for electrons is given by

_-T® _T (54)

In equation (50), ev is the vibrational-electronic-electron energy of mixture

per unit mass, and by., is the vibrational-electronic-electron enthalpy for

species s per unit mass. These are defined by

ev = e,, + e,t (55)

by,. = h.,. + h,+,, (56)

The enthalpy of the mixture, h, is expressed by

11

h=_C.h.

where h° is the enthalpy of species s including the heat of formation.

Supplementary relations are given by

11

'}--: Co = 1
°=1

(57)

(58)
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11

°----1

The normalized heat-transfer rate to the wall is given by

cgT c_T_ _-.._#Le° _h OCt
q,,,= -,+,.,_l,.v- (,,,,.,+ ,,.)---8-(-I,,,- ,_.,,--_, "8(- "'°=I /"7'

(60)

The nondimensional quantities appearing in the above equations are the

Reynolds, Prandtl and Lewis numbers defined as:

Re =__®_= T,.,,.,,
P,._!

Pr _ p%

Prv z T_pv

_-_°_
Lev,, =-

where _p and _ are the frozen specific heat of the mixture and the specific

heat of the mixture for vibrationally excited molecules, respectively.

In the governing equations (46)-(52), the specific second-order terms are

underlined. These terms become negligible when the radius of curvature is

very large compared with the local boundary-layer thickness (first-order the-

ory). Other second-order effects are present in the momentum and energy

equations through metric tensor components gij_ which are influenced by the
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surface curvature and in turn affectthe Christoffelsymbols, and the con-

travariant velocity components U, V, W, which are related to the general

base vectors__. Itmust be noted that a surface-normal momentum equation

(49) contains a non-zero pressure gradient term, which resultsfrom centrifu-

gal forceinduced by the surfacecurvature. The pressure isthus not constant

acrossthe boundary layer.In the first-orderapproximation, the metrics can

be estimated on the body surfacesincethere isno significantvariationacross

the boundary layer[19].Thus, gij= aa_,(i,j,a,13 -- 1,2),and the number of

operations required for a numerical calculationwillbe significantlyreduced.

It is worthy to compare the three-dimensional second-order boundary-

layer equations (46)-(52) with the three-dimensional viscous-shock-layer equa-

tions [41-44] in a non-orthogonal, surface-oriented coordinate system. In the

viscous-shock-layer analysis of Ref. 41-44, all terms up to second order in

c, where _ = Re-_ is the Reynolds number parameter, are retained in the

normalized steady Navier-Stokes equations. Also, all viscous terms in the

normal momentum equation are neglected to eliminate the cross derivatives

that appear. The resulting viscous-shock-layer (VSL) equations are the same

to the second-order boundary-layer equations (46)-(52) except for the sur-

face normal momentum equation (49). By additionally applying thin layer

approximation to the normal momentum equation, the hyperbolic-parabolic

nature of the VSL equations can be changed to the totally parabolic nature

of the second-order boundary-layer equations [45].

The perfect gas boundary-layer equations can be easily obtained by drop-

ping vibrational-electronic-electron energy equation (50) and species continu-

ity equation (52) and modifying overall energy equation (51). The resulting

equations axe identical with the system of equations previously developed by

Panaras [23].

As explained in 2.1.1, once the geometrical structure of the body sur-

face is defined, one can calculate the metric tensor and the ChristoffeI sym-

bols. These geometric quantities are then substituted into the boundary-layer

equations (46)-(52).

2.4 Boundary Conditions
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The boundary conditions at the wall are prescribed by the usual non-slip

conditions. The velocities at the wall are given by

u(_,n,¢ = 0) = v(_,n,( = 0) = wff,_,¢ = 0) = 0 (61)

The translational-rotational temperature at the wall may be given by ei-

ther the prescribed wall temperature or the prescribed heat flux through the
surface. That is:

T(_,r/,_ = O) = T,(_,y) (62)

or

OTff,,7,i = O) OT,off,,_)
- (63)o_ o_

The T_ = T_ approximation may not be valid in the boundary layer adjacent

to the wall, where electrons are affected by the electrical field produced by a

charge separation (the plasma-sheath effects) [46]. Consequently, the electron

temperature Te and the electron pressure Pe at the wall must be derived using

the plasma-sheath theory disctrssed in Ref. 46. However, we tentatively

ignore the plasma-sheath effects for simplicity and assume T_ = T_ at the

wall. Then the vibrational-electronic-electron temperature T_ at the wall is

given by

To(_,_,_ = 0) = T_(_,_) (64)

or

OT.(_,,7,¢= O) 0T_(f,_)
_ (65)

The body is assumed to have a fully catalytic or noncatalytic wall. Then,

the species concentration at the wall can be expressed by

Co(_,_/,_ = 0) = Co,_(_,_7); (for fully catalytic wall) (66)

or

oc.(f,,_,i =0) = 0; (/or no_catatyti_w_tI) (67)
Oi

Usually, Co_(_,y) are not known a priori and therefore must be determined

from the species mass flux balance at the wall. However, for simplicity,

Co,o(_,_/) are chosen here to be equilibrium values with a specified tempera-

ture and a pressure. For more general catalytic boundary conditions for the

species conservation equations, see Ref. 32.
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The outer boundary conditions are derived from the matching between

the viscous and the inviscid profiles at the boundary-layer outer edge. In

first-order theory, this leads to the assumption that the inviscid flow across

the boundary layer is constant and equal to its value at the wail.

= V,d(_,'7,_= O) (68)

v(_,n,¢ = s) = v,d(_,n,¢ = s)
= v,d(_,n,¢ = 0) (69)

In second-order theory, the matching between the boundary layer and the

externM inviscid flow must be fitted up to the second order. Monnoyer [15,

16] deduced the following equivalent inviscid velocity distribution across the

boundary layer assuming that the outer inviscid flow is irrotationah

u(_,,7,¢ = s) = g**_,_V.d(_,'7,_ = O) (70)

v(_,v,¢ = s) = g"=,,v,d(_,v, ¢ = 0) (71)

The relations (70) and(71) reflect the skewing of the inviscid velocity flow field

across the boundary layer. That is, the velocity vector v_ is not contained

in one plane normal to the surface as in the first-order theory. Instead, the

angle between the z 1 line at the wall and _d varies across the boundary

layer. The rationale of these arguments can be found in Ref. 15. All other

flow variables at the outer edge such as temperature, pressure and species

concentrations are interpolated from the inviscid solution profiles.

2.5 Displacement Thickness

The displacement thickness 51 is an important boundary-layer parameter

in the evaluation of the extent of the viscous flow field. Assuming that the

boundary-layer thickness 5, as well as the velocity distribution along the

normal to the wail are known at any point on the body surface (strictly

speaking, the boundary-layer thickness must be determined in the solution

process by a condition of smooth merging of boundary-layer flow into the
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outer inviscid flow), the displacement thickness 61 is defined in such a way

that the mass flux in the presence of the boundary layer is the same as the

mass flux in a inviscid flow terminating at 61 instead of the wall [15, 16].

This definition leads to the relationship:

0 r _ 0 f

a

where _ = de_(o_) = a,,a22 - (a12)_.
M is given by [19]

M = 1 -(K, + I_)¢ + K,K_¢2 (74)

where K1 and K_ are the principal curvatures of the surface. Equations

(72) and (73) are integro-differential equations for the unknown displace-

ment thickness 61 which must be solved iteratively after all the flow variables

are known. The displacement effect of the boundary layer on the external

inviscid flow can be dealt with by means of an effective thickening of the

body, which requires the body geometry to be readjusted during the viscous-

inviscid matching process.

An alternative way of imposing the displacement effect is the equivalent

source distribution proposed by Lighthill [47]. For the surface _ = gx (_, _7.)to

be an inviscid streamline surface, an equivalent wall outflow (peWe)_, has to

be applied which obeys the relationship [15, 16] :

0 eSz

= (76)
Combiningequations (72), (73), (75) and (76) provides the _oUowingrela-
tionship which no longer includes 61:

1 0/_6
(pedWed)w -- _---_ {-_( fo M['oedUed -- pUld_)

+ 7(v_ f MLo,nV,n - pV]a_)} (77)
,to
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The equivalentsourcedistribution canbe calculated from equation (77) once

the boundary layer solution is obtained. The influence of the boundary layer

on the inviscid flow is then accounted for by a distribution of equivalent

source distribution at the wall (77).

A matching of the boundary-layer flow to the external inviscid flow can

be achieved by an iterative process in which the outer flow is modified by

the newly computed displacement effect. The resulting equivalent inviscid

flow is then further coupled with the boundary layer by providing the new

boundary conditions at the boundary-layer outer edge. In addition, the other

second-order effects such as the entropy and total enthalpy gradient effects,

which originate in the inviscid part of the flow, can be taken into account in

the calculation by matching process. Consequently, in the future paper it is

necessary to address the numerical methods for the boundary-layer solution,

the computational algorithms for the inviscid Euler solution, and the viscous-

invicid techniques.

2.6 Thermodynamic and Transport Properties

In the calculation of viscous flow over hypersonic vehicles, the correct eval-

uation of the heat transfer rate to the body surface is strongly subject to the

accuracy of the thermodynamic and transport properties which involve un-

certainties in the high temperature regime especially in the thermal nonequi-

librium multi-temperature environments. The nonequilibrium flow environ-

ments surrounding these vehicles will significantly impact the aerodynamic

and thermal loads to the vehicles. Consequently, aerothermodynamic evalu-

ation under these circumstances requires a reasonable model for these physi-

cal properties. Lee [29] developed an explicit formula for the nonequilibrium

thermodynamic and transport properties based on the three-temperature

concept (translational-rotational, vibrational, and electron-electronic excita-

tion temperatures). To derive the nonequilibrium thermodynamic properties,

it is assumed that 1) the rotational mode of molecules is fully equilibrated

with the translational mode of heavy particles and that 2) the population

densities of vibrational and electronic excitation energy levels have Boltz-

mann distributions with a vibrational temperature _ and an electron tem-

perature _. In addition, an assumption is made that there is no coupling

of energy level between these modes. The nonequilibrium transport prop-
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erties are evaluated by assuming that all distribution functions are close to

Maxwellian about their inherent temperature, that is, T for heavy particles

(molecules, atoms, and ions) and Te for electrons.

2.6.1 Thermodynamic Properties

By slightly modifying the formulation of Lee [29], the vibrational energy

of the mixture _ can be expressed by

_ = _'--'P'_'" (78)

where _., is the vibrational energy for species s given by

f_,° = _,.d_ (_9)
PGI

where _._,, is the specific heat of species s at constant volume for vibrational

excitation, and _' is the dummy variable of integration. It must be noted

that _,° is zero for atoms and electrons (s - 1,2, 6, 7, 11).

The electronic energy of mixture _et is given by

_,, = Ele_=1p._.z,. (80)

where _,, is defined as the electronic excitation energy for species s except

for electrons. For species s, _z,° is expressed by

el e!

(81)

where _-_t,° is the specific heat of species s at constant volume for electronic

excitation.

For electrons, _t,_ is defined as the translational energy of electrons, i.e.,

3 _ _ 3 _ _ (82)
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The vibrational entha2py of species s, h'-'_,o,is identical to the vibrational

energy e"_,° for molecular species ,.

The electronic enth_dpy of species a, h"_Lo, becomes identical to Eel,o for MI

species except electrons. For electrons, hei,e is given by

L_,e= :e,,e+ ( )_, = :(_:)_r_ (83)

The enthalpy for species ,, h°, for the present two-temperature model is given

by

-L = (_,,. + e..,.)dY + _,.d_ + _,,.dT + h. (84)
ct e! ,!

E_,°, c-m,° , _,° and _,. ate the specific heats at constaalt pressure for species

s for translation, rotationM excitation, vibrational excitation and electronic

excitation respectively, and _ is the heat of formation.

The frozen specific heat of the mixture _, , the specific heat of the mixture

for vibrationa21y excited molecules E_ and the specific heat of the mixture

for electronic excitation _, ate defined by

11

_, = _ c.(_.,. + _,.) (85)
e=l

11

#=1

11

:,_= _ c._,. (8_)
J=l

Since both the translational and rotational modes ate assumed to be fully

excited, the specific heats for those modes therefore reduce to [29]

3_
_"° = 2 m_-_ (88)

for the translational mode of species a including electrons, and

_.,.= _.. (89)
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for the rotational mode.

The internal modes separation assumption is valid only at low tem-

peratures. At sufficiently high temperatures, the coupling effects between
rotation-vibration modes and rotation-vibration-electronic modes become

important when evaluating the internal partition functions from which the

corresponding specific heats can be derived. Balakrishnan [48] evaluated the

partition functions for internal modes by introducing correction factors and

generated the following curve fit formula for the vibrational and electronic

4"186"1°7)(7_,.+ B_,.To+ _-_)_"_'° = ( M_':

(4.1_: 107 V.,,,.

specific heats:

(90)

(91)

where A, B, and _ are constants irr the above polynomial equations and are

presented in ReL 48.

For the translational mode, the following thermodynamic relation applies

[29]:

_.,. = _,,. + _. (92)

For internal modes,

_,., = _., (03)

where z represents r, v, or el.

2.6.2 Transport Properties

In Ref. 29, the transport properties are evaluated by extending Yos's

formula [49], which is based on the first Chapman-Enskog approximation,

to the three-temperature gas mixture. In Lee's analysis [29], the controlling

temperature in the collision integrals is assumed to be the electron tempera-

ture T-'-,for collisions involving electrons, and the heavy-particle translational

temperature _ otherwise. By setting _, = _,,, the necessary transport prop-

erties can be obtained for the present _wo-temperature approximation.
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In the subsequent evaluations of transport properties, two modified col-

lision integrals, _-(1)(_) and A(2,)(T), andthe m01ar concentration of species

s, _o, are extensively used. These quantities are defined by

8 27.7, 1"2 _1,1)

3 _-_/'(M. +7,)
(94)

_,2>(_)= 16 2_,7, ,/,¢-_2.,)'
T[¢_(_.'+ 7,) ] _,, (95)

C°

V, pm-_',= _, (96)

The collision integrals Ir_ and 7r_,.,, for an ll-species air model are

evaluated and curve-fitted as a function of temperature in Ref. 50, and

tabular version of the data are presented in Ref. 40.

The viscosity of the mixture._ is given by

•--, + 11 2) (97)

as

The translational thermal conductivity _ of heavy particles is expressed

t5_ 7-. (98)
= T _ _Io__1a°,V,._--(,))(_)4,3.54V,_-'(_)(_,,)

where a,, is defined by

[1- (m,/,_,)][0.4_- 2.54(m./m,)]
a°, = 1 4, [1d-(too/m,)]2 (99)

The rotational thermal conductivity of mixture _, is expressed as

(_00)

Thus, the frozen thermal conductivity of the mixture gh for translational-

rotational energy of heavy particles is given by
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The vibrational thermal conductivity of the mixture _ is equal to the rota-

tional thermal conductivity _,. That is,

_. = _--, (lO2)

The V-V thermal conductivity g',_ in Eq. (49), which originates exclusively

in molecule-molecule collisions, can be written as

The electron thermal conductivity g, is given by

15- %
_ = -_--k _ 1.45_,_(2)(T_)_r=1

(103)

(lO4)

The thermal conductivity of electrons _ due to collisions only between elec-

trons is given by

(lO5)
_,-£_,(T,,)

The binary diffusion coefficient of an s - r pair of heavy particles is given

by

= (lOO)
_ B'r,l, ,t

where _ is the pressure.

The binary diffusion coefficient between electrons and heavy particles is ex-

pressed as

-- kT_ (107)

The effective diffusion coefficient of species s is then defined as

_,_.(1-_._-.)

B,.:,,_.(_,/D,,,.)

where the total molar concentration of the mixture _'t is defined by

(108)

1!

Vt = _'o (109)
o----1
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For ions, the ambipolar diffusion coefficient D--'_,,which has the double value of

the ionic diffusion coefficient Do, is introduced due to the ambipolar diffusion

approximation [29]; that is

_o- 2]_0 (8=6,7,8,9,10)

Then, the effective diffusion coefficient of electrons De is expressed by

o=6 d.Jo'y°
_=m, 10 "-

_o=e too%

(11o)

(111)

2.7 Chemical Kinetic Model

Under chemical and thermal nonequilibrium environments, there axe cou-

piing phenomena among the internal energy modes and between chemical

processes and the internal modes. Therefore, the chemical reaction rate co-

efficients axe no longer a function of a single temperature. Furthermore,

several energy reactive source terms and physical properties originated in

the energy exchange processes appear in the vibrational-electronic-electron

energy equation (34) or (50).

2.7.1 Chemical Reaction Rate Coefficients

Park [36, 37] proposed a controlling-temperature concept for certain types

of reactions and assessed its validity by comparing the calculated results

with the available experimental data for nitrogen and air. He suggested

using a geometrical average temperature Ta as a controlling temperature for

dissociative reactions which implicitly accounts for the vibration-dissociation

coupling. The average temperature _a is defined by

ro= (q= 0.5or0.7) 012)

He also suggests that the controlling temperature for the electron impact

ionization is _, (_ for a two-temperature model). All other reactions are

characterized by the translational-rotational temperature _. Park recom-

mended the rate coefficients for the chemical reactions in the nonequiiibrium
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high temperature air be expressed as a function of the controlling tempera-

ture, and tabulated forward reaction rate coeffcients _'y,v for 1I air species

with 33 reactions [51]. The backward reaction rate coefficient kb,p is related

to the forward reaction rate coefficient through the equilibrium constant Ke,p
in the form

kb,p kf,p (113)

Park [52] generated the empirical formula for the equilibrium constant K,,p

with polynomial functions of translational-rotational temperature T.

2.7.2 Reactive Source Terms

The effective collision frequency of electrons v'_e,, which appears in the

elastic energy exchange term between electrons and heavy particles in Eq.

(34) or (50), is explained in detaiI in Ref. 29.

The vibrational energy reactive source term w°D° represents the rate of

change of vibrational energy of the diatomic molecules due to dissociation or

recombination. The electronic energy reactive sourceterm _e,°_i,0 accounts

for the rate of electron energy loss due to electron-impact ionization. These

two terms are discussed in Ref. 40 and the tabulated values are presented

there.

2.8 Vibrational Relaxation

The rate of change in the population of the vibrational states at low

temperatures is described well by an equation of the Landau-Teller form [54].

However, at high vibrational temperatures the vibrational energy exchange

process is primarily governed by a comparatively slow diffusion process [38].

A bridging function between the faster Landau-Teller relaxation rate and the

slower diffusive rate has been proposed by Park [36, 37, 53]. The resulting

expression for the translation-vibration (T-V) energy exchange term in Eq.

(34) or (50) is

is.
r. T.h -
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where the bridging function, So, is given by

so = 3.se_p(-_°/Lh) (::4)

The quantities _'°h and _,,..h are the translational-rotational and vibrational

temperatures immediately behind the bow shock wave. The characteristic

temperature, 0o, for molecular species s are listed in Ref. 55.

The relaxation time of species s, "r, is given as a combination of the

Landau-Teller type relaxation time and the collision limited relaxation time

such that

L = < _. > + _o. (::5)

The average relaxation time < _'° > is defined as [29]

< V' >= 1o _ (116)

where _°, is the T-V relaxation time for molecular species s with collision

partner r, and is usually determined by the semiempirical correlations of

Millikan and White [54]. The collision limited relaxation time _'c° is given by

[36,371
1

r%. = L_. (117)

_'° is the number density of species s, and _. is the average molecular speed

of species s, expressed by

(i18)

The expression for the limiting collision cross section, _, is assumed to be

[53]

_ = 10-2'(50,000/T) ' m 2 (119)
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3. Stagnation-Point Flow

3.1 Basic Equations for Stagnation Flow

If the origin of the coordinate system is at the stagnation point, then the

boundary-layer equations can be solved by marching away from the stagna-

tion point. One must first determine the stagnation point location and then

needed grid. This can be done by solving the Euler equations in the Cartesian

coordinate system. The stagnation point location is determined by interpre-

tating the inviscid flow properties between Cartesian grid points. The origin

of the coordinates for the Euler equations then is shifted to the obtained

stagnation point location. At the same time, the boundary-layer coordinate

system originates from the stagnation point is considered [56]. This technique

has been successfully used in the axisymmetric analog method [3, 4, 57, 58]

to compute approximately the three-dlmensional boundary layers. In this

approach, the surface streamlines which start from the stagnation point are

calculated by using either surface velocity or pressure obtained from the

inviscid flow solution. To ensure the efficiency and accuracy in the viscous-

inviscid coupling, it is desirable to choose the new Euler grid after the origin

shfting coincides with the boundary-layer grid on the body surface. Thus,

interpolation between the Euler and the boundary-layer grid points becomes

necessary in surface normal direction only.

In order to start the boundary-layer solution from the three-dimensional

stagnation point, it is necessary to obtain the stagnation-point equations

and their solutions first. We let the origin of the surface-oriented coordinate

system (_,_,_) coincide with the stagnation point S on the body surface.

That is

S = S(_ = '7 = _ = O) (:20)

It is assumed that the stagnation llne is a straight line normal to the body

surface. In accordance with the approach of Hirschel and Kordulla [19], we

assume further that the body surface is not too strongly curved in the vicinity

of the stagnation point, and that the body and the flow past it, and therefore

the flow variables, are symmetric in regard to two planes (_ = 0 and 7/= 0)

at the stagnation point.

_=0, _7=0, (>_0:
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OU* OV*

077 O(
OT OT OT,_ OT,, Oh Oh Oev Oev

o( o% o_ o,1 o_ aq o_ aq
op op op op op, op, oc. oc. = o

The definition of a three-dimensional stagnation point is given by [19]

(121)

_=0, _=0, (:>0:

U* = V* = 0
cOU" OV*

-g-(Co, _ #0 (1221

Here, new dependent variables at the stagnation line (_ -- 0, 7/-- 0, _ _ 0)

axe introduced
OU Ov

A_(¢)= a_ A'(¢)- _ (123)

Since the variables W, A 1, A 2, p, p, Pc, T, T_ and Co are functions of only

( along the stagnation line by definition, the following set of ordinary differ-

ential equations can be obtained by applying the conditions (121) and (122)

to the boundary-layer equations (46)-(52):

Continuity:

_-momentum:

1 d(PWv_) = 0 (124)
P(A1+ A2)+ v_ d_

dA 1

p(A1) ' + pW-'_-[- = ped(A_d) _

1 d dA 1 1 1 dA ldVf(+ 2t_vl dA1

n-momentum:

(125)

_ dA _

p(A')' + pw--T( =p._(A_2_

1 d dA 2 1 1 dA 2dv_ 2#p_ dA _
(126)

42



_-momentum:

_=0
d_

Vibr ational-electronic-e|ectron energy:

(12_)

""-- -- ----rt ___ldevdW t d , dT,, 1 d (,_',+ ,_,)dv,"gdT,,
P"a¢=P'a¢+R_a¢"""+""a¢ '+nea¢ _ a¢ ,_¢

1 ..;_;y_d11 #Le,,,, hv.,-_-)dC" + _1 1 )_[,(_..____2L#Le,,,, hv'°) d_dC,,,.-;'=',+

+P E c.e:"- e""[ To_,-T,,
•=M r. Toh - T,,,,h

10

- E*.,.E,,. + 52 ,_.D:
*---6 *=M

I0 ,
]s'-' + 3( )p(T- T,,) y_ _''

m----I _

(128)

Overall energy:

dh 1 d dT 1 tch dv,_ dT

+ E_[(,,,, +,,,) 1+

.=,-yTh.-7(-)

1 0¢,, + _:,)Oy/'ffOT,,

Re v_ OC OC

1 n (#Le. dv'_dC, (_29)

Species continuity:

dC, 1 1 (#Le, dC,.

1 1 t_Le, dvf_ dC,

+ Rev_ Pr d{ d"_" + _°; (' = 1,2,...,11) (130)

The equations (125) and (126) are obtained by differentiating the momentum

equations (47) and (48) with respect to _ and _/, respectively. Furthermore,
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the pressuregradient terms in the equations (125) and (126) have been re-

placed by the convective terms at the outer edge of the boundary layer.

p,d(AXa)2= g22 O_p g_ 02pg a_a_ + (131)

2 _ = gl._.2 (9_P _ gll (92P
p.,(A._) g a_o, 7o-_ (132)

The obtained (6 + NS) equations (124)-(130) plus the equations of state

(53) and (54) would determine the (8 + NS) unknown variables W, A 1, A 2,
p, p, p,, T, T,, and C,.

Before solving the equations (124)-(130), a transformation of the normal

coordinate may be introduced by changing the independent variable _rom

to X in such a way that
¢

X = _ (133)

where 6 is the local boundary-layer thickness. This transformation, which

does not affect the geometrical considerations, gives the effect of fixing the

body surface at X = 0 and the outer boundary-layer edge at X - 1, and

a finite number of grid points can be used over the computational domain

O<x_<l.

3.2 Boundary Conditions for Stagnation Flow

The usual boundary conditions at the wall are

W(¢=0) = 0 (134)

A'(¢ = o) = A'(¢ = o) = o (135)

or

T(_ = O) = T,_

dT(( -- O) dT,_

d_ d(

(138)

(137)
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T_(¢= 0)= T_ (13S)

or

dT_(_= o) dT_
= _ (139)d¢ d¢

c.(¢ = o) = c.w; (.:o_ /,my c.tat_ti_waU) (140)

or

dc.(f =o)
d{ - O; (for noncatalyticwall) (141)

The velocity W and the partial derivatives of velocities A 1 and A 2 at the

outer boundary are

W(¢ = ,_) = W.a (142)

A*(( _) A_a(( 6) " '= = = = g a,,A,d(( = O)

n'(i 8) A_d(¢ 6) " 2= = = = g a22Aed(_ = O) (143)

where
OUea OV,d

A_d(_)=-- -_, A;d(_)=-

The outer boundary conditions for pressure, temperatures and species con-

centration are given by the external inviscid flow solution at the stagnation

line.

3.3 Displacement Thickness for Stagnation Flow

By imposing the conditions (121) and (122) into equations (72) and (73),

the relation for the displacement thickness along the stagnation line becomes

fo' M[p'd(A_a + Aid) - p(A' + A*)]d¢

=/_' Mped(A_a + AL)d¢ (144)
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Similarly, an equivalent wall outflow at the stagnation point is obtained

by relation (77)

lf0_(pedWed),,, = _ M[Ped(A_d + AZ,d)- P( A1 + A_)] d_
(145)

Since M is defined by equation (74), the equivalent source at the stag-

nation point can be calculated from equation (145) once the boundary layer

solution is obtained.
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4. Concluding Remarks

The second-order hypersonic three-dimensional thermochemical nonequi-

Hbrium boundary-layer equations in generalized curvilinear coordinates are

derived by means of an order-of-magnitude analysis. The two-temperature

concept is extensively applied to describe a thermal and chemical nonequilib-

rium flow around a general body geometry. Corresponding three-dimensional

boundary conditions are shown along with the boundary-layer parameters

and the invicid-viscous layer matching procedure. In addition, the expres-

sions for the nonequilibrium thermodynamic and transport properties and

chemical reaction rates are given. The resulting set of basic equations will be

suitable for the development of a boundary-layer computational code which

allows simultaneous handling of both general three-dimensional configura-

tions and general thermochemical nonequilibrium gas models in an engi-

neering context. By investigating a systematic analysis of three-dimensional

flow and high-temperature nonequilibrium chemico-physics described in the

present paper, the future users of the three-dimensional code being developed

will be able to have an opportunity to evaluate the accuracy of the governing

equations that are being solved numerically (code validation).
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Appendix A

Metric Tensors

By applying the definition [equation (7)], the components of the covariant

metric tensor in the present partially orthogonal system are given by:

2+2 2g22 = z,7 !,',_+ z,_

, gl= = g21 = z_z,7 + Y_Z/,7+ zc.z,7

, gls=g31=g_3=gs_=0

= i (A-

The components of the contravari_t metric tensor can be expressed sim-

ilarly by the relation (9):

gll g22 g12 -g12
g g

g

g3S = gzzg22 -g_2 = ]
g

gZ3 gal g_ gS2 = 0

(A-2)

i
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Appendix B

Christoffel Symbols

The Christoffel symbols of the second kind axe given here for the present

semiorthogonal coordinate system:

1 . 0gtl 20915 0gn)]

1 . Ogzl 09=2.

r_l = rh = _tg22-_ gli-F_-J

1 2 0912 0922 0952 ]

1 2 0912 0gtl Ogtt
r_l = _[g11( ._- _ ) - gl:,--_-j

1 . Og=+ Ogtt ;

rh = rh = _tg,+,.'_ g+.+,-_-+

r+5= _[+llog22 0__5 Og++o,7 g.,:,(2 o_)1
10g,-.,o.

_'_ =-2 0---_-' (,_,_ = 1,2)

r_ = _,, = o; rh = o; (i = 1,2,3)
where g = gllg25 - (g12) _-.

(B-l)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-S)

(B-9)

(B- 10)
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The covariant curvature tensor b,,/3 of the surface is related to the Christof-

fel symbols of the second kind by

b.. = _; (_,/_ = 1,2) (B- 13)

where the dot superscript '.' denotes a quantity on the body surface. Prom

equation (B-7), the following expressions for b_ result:

I Oall

2 al
1 8a22

522
2 al
I aa12

b12= b21 = -_ 0--_-
(B- 14)
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Appendix C

Principal Curvatures of the Surface

The principal curvatures KI and Ks [equation (45)] play an important role

in second-order boundary-layer theory since they indicate if the local radius

of curvature of the surface is not negligible compared to the boundary-layer

thickness. K1 and Ks are determined from the following relations [19]:

K1 + Ks : alibi2 + a_2bll - 2a12bl_ (C - 1)
alla,_ - (al_)_

K1. Ks = b_lb_- (b,_)_ (C- 2)
a,_a,, - (a_)_

The Principal curvature radii R1 and R2 are given by

1
R_= -- (c- 3)

K1

1
R_= -- (c- 4)

K2

The directions of the principal curvatures of the surface :X1 and _2 can be

obtained as the solution of a quadratic equation [19]:
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